top of page

Cover Gallery

Research IDs

Screenshot 2025-12-03 104129.png
Screenshot 2025-12-03 104912.png
Screenshot 2025-12-03 105541.png

Publications

Screenshot 2025-12-02 112732.png

36. Sperm cell empowerment: X-ray-guided magnetic fields for enhanced actuation and localization of cytocompatible biohybrid microrobots

Magdanz, V., van der Mijle Meijer, J.K., Ligtenberg, LJ.W., Pervez, Y., LaBrash-White, M., Dargah, M.S., Mulder, I., Mohsenkani, S., Gorbet, M., Bouzari, N., Shahsavan, H., Weber, L., Liefers, R.H., Warlé, M.C., Khalil, I.S.M., (2025) Sperm cell empowerment: X-ray-guided magnetic fields for enhanced actuation and localization of cytocompatible biohybrid microrobots. npj Robot 3, 28.

images_large_nn5c03911_0021.jpeg
images_large_nn5c03911_0001.jpeg

35. Technology Roadmap of Micro/Nanorobots

Ju, X., Chen, C., Oral, C.M., Sevim, S., Golestanian, R., Sun, M,, Bouzari, N., Lin, X., Urso, M., Nam, J.S., Cho, Y., Peng, X., Landers, F.C., Yang, S., Adibi, A., Taz, N., Wittkowski, R., Ahmed, D., Wang, W., Magdanz, V., Medina-Sánchez, M., Guix, M., Bari, N., Behkam, B., Kapral, R., Huang, Y., Tang, J., Wang, B., Morozov, K., Leshansky, A., Abbasi, S.A., Choi, H., Ghosh, S., Fernandes, B.B., Battaglia, G., Fischer, P., Ghosh, A., Sánchez, B.J., Escarpa, A., Martinet, Q., Palacci, J., Lauga, E., Moran, J., Ramos-Docampo, M.A., Städler, B., Restrepo, R.S.H., Yossifon, G., Nicholas, J.D., Ignés-Mullol, J., Puigmartí-Luis, J., Liu, Y., Zarzar, L.D., Shields IV, C.W., Li, L., Li, S., Ma, X., Gracias, D.H., Velev, O., Sánchez, S., Esplandiu, M.J., Simmchen, J., Lobosco, A., Misra, S., Wu, Z., Li, J., Kuhn, A., Nourhani, A., Maric, T., Xiong, Z., Aghakhani, A., Mei, Y., Tu, Y., Peng, F., Diller, E., Sakar, M.S., Sen, A., Law, J., Sun, Y., Pena-Francesch, A., Villa, K., Li, H., Fan, D.E., Liang, K., Huang, T.J., Chen, X.Z., Tang, S., Zhang, X., Cui, J., Wang, H., Gao, W., Bandari, V.K., Schmidt, O.G., Wu, X., Guan, J., Nelson, M.S.B.J., Pané, S., Zhang, L., Shahsavan, H., He, Q., Kim, I.D., Wang, J., Pumera, M., (2025) Technology Roadmap of Micro/Nanorobots. ACS Nano, 19 (27), 24174-24334

adma202504592-fig-0001-m.jpg

34. Stiffening Liquid Crystal Elastomers with Liquid Crystal Inclusions

Vasanji, S., Scarfo, M.G., Alyami, A., Mekonnen, T.H., Hajireza, P., Saed, M.O., Jákli, A., Shahsavan, H., (2025) Stiffening Liquid Crystal Elastomers with Liquid Crystal Inclusions. Adv. Mater., 37, no. 45: 2504592.

smtd202400812-fig-0001-m.jpg

33. Hybrid Zwitterionic Hydrogels with Encoded Differential Swelling and Programmed Deformation for Small-Scale Robotics

Bouzari, N., Nasseri, R., Huang, J., Ganguly, S., Tang, X., Mekonnen, T.H., Aghakhani, A. and Shahsavan, H., (2025), Hybrid Zwitterionic Hydrogels with Encoded Differential Swelling and Programmed Deformation for Small‐Scale Robotics. Small Methods, 9(3), p.2400812.

mr4c00187_0006.webp

32. From Anisotropic Molecules and Particles to Small-Scale Actuators and Robots: An Account of Polymerized Liquid Crystals

Rajabi, N., Scarfo, M.G., Fredericks, C.M., Herrera Restrepo, R.S., Adibi, A. and Shahsavan, H., (2024), From Anisotropic Molecules and Particles to Small-Scale Actuators and Robots: An Account of Polymerized Liquid Crystals. Accounts of Materials Research, 5(12), pp.1520-1531. 

adfm202413129-fig-0001-m.jpg
adfm202413129-fig-0001-m.jpg

31. Self-Propelled Morphing Matter for Small-Scale Swimming Soft Robots

Rajabi, N., Scarfo, M.G., Fredericks, C.M., Herrera Restrepo, R.S., Adibi, A. and Shahsavan, H., (2024), From Anisotropic Molecules and Particles to Small-Scale Actuators and Robots: An Account of Polymerized Liquid Crystals. Accounts of Materials Research, 5(12), pp.1520-1531. 

1-s2.0-S2590238523006288-fx1.jpg

30. Macromolecular radical networks for organic soft magnets

Pena-Francesch, A., Zhang, Z., Marks, L., Cabanach, P., Richardson, K., Sheehan, D., McCracken, J., Shahsavan, H. and Sitti, M., (2024). Macromolecular radical networks for organic soft magnets, Matter, 7(4), pp.1503-1516..

41467_2023_41874_Fig1_HTML.png

29. Programmable nanocomposites of cellulose nanocrystals and zwitterionic hydrogels for soft robotics

Nasseri, R., Bouzari, N., Huang, J., Golzar, H., Jankhani, S., Tang, X., Mekonnen, T.H., Aghakhani, A., Shahsavan, H., 2023. Programmable nanocomposites of cellulose nanocrystals and zwitterionic hydrogels for soft robotics. Nature Communications, 14(1), 6108.

adma202303740-fig-0003-m.jpg

28. Liquid Crystal Networks Meet Water: It's Complicated!

Pinchin NP., Guo H., Meteling H., Deng Z., Priimagi A., Shahsavan H., (2023), Liquid Crystal Networks Meet Water: It's Complicated!, Advanced Materials, 2303740 

advs4611-fig-0001-m.jpg

27. Light-Fueled Hydrogel Actuators with Controlled Deformation and Photocatalytic Activity

Chen C, Ruan Q., Nasseri R., Zhang H., Xi X., Xia H., Xu G., Xie Q., Yi C., Sun Z., Shahsavan H., Zhang W., (2022), Light‐Fueled Hydrogel Actuators with Controlled Deformation and Photocatalytic Activity, Advanced Science, 2204730

d2sm00826b-f2.gif

26. Plasticized liquid crystal networks and chemical motors for the active control of power transmission in mechanical devices

 Pinchin N. P., Lin C. H., Kinane C. A., Yamada N., Pena-Francesch A, and Shahsavan H., (2022), Plasticized liquid crystal networks and chemical motors for the active control of power transmission in mechanical devices, Soft Matter, in-press  

adfm202206939-fig-0002-m.jpg

25. Semi‐Crystalline Rubber as a Light‐Responsive, Programmable, Resilient Robotic Material

Yang Q., Shahsavan H., Deng Z., Guo H., Zhang H., Liu H., Zhang C., Priimagi A., Zhang X. and Zeng H., (2022), Semi‐Crystalline Rubber as a Light‐Responsive, Programmable, Resilient Robotic Material, Advanced Functional Materials, 2206939 

adma202104807-fig-0004-m.jpg

24. Liquid Crystal Structure of Supercooled Liquid Gallium and Eutectic Gallium–Indium

Yunusa M,. Adaka A., Aghakhani A., Shahsavan H., Guo Y., Alapan Y., Jákli A,. and Sitti M., (2021), Liquid Crystal Structure of Supercooled Liquid Gallium and Eutectic Gallium-Indium, Advanced Materials, 33(38), 202104807

image.png

23. Liquid Crystal Elastomer Actuated Reconfigurable Microscale Kirigami Metastructures

Shahsavan H., Zhang M., Guo Y., Pena-Francesch A., Zhang Y., and Sitti M., (2021), Liquid Crystal Elastomer Actuated Reconfigurable Microscale Kirigami Metastructures, Advanced Materials, 33(25), 202008605

image.png

22. 3D Microstructures of Liquid Crystal Networks with Programmed Voxelated Director Fields

Guo Y., Shahsavan H., and Sitti M., (2020), Three-Dimensional Microstructures of Liquid Crystal Networks with Programmed Voxelated Director Fields, Advanced Materials, 32(38), 202002753 

image_edited.jpg

21. Microscale Polarization Color Pixels from Liquid Crystal Elastomers

Guo Y., Shahsavan H., and Sitti M., (2020), Microscale Polarization Color Pixels from Liquid Crystal Elastomers, Advanced Optical Materials, 8(17), 201902098

image_edited.jpg

20. Bioinspired underwater locomotion of light-driven liquid crystal gels

Shahsavan H., Aghakhani A., Zeng H., Guo Y., Davidson Z.S., Priimagi A., and Sitti M., (2020), Bioinspired Underwater Locomotion of Liquid Crystal Gels, Proceedings of the National Academy of Sciences,  117 (10), 5125-5133

image.png

19. Light-Fueled Hydrogel Actuators with Controlled Deformation and Photocatalytic Activity

Chen C, Ruan Q., Nasseri R., Zhang H., Xi X., Xia H., Xu G., Xie Q., Yi C., Sun Z., Shahsavan H., Zhang W., (2022), Light‐Fueled Hydrogel Actuators with Controlled Deformation and Photocatalytic Activity, Advanced Science, 2204730

image.png

18. Monolithic shape-programmable dielectric liquid crystal elastomer actuators

Davidson Z.S., Shahsavan H., Aghakhani A., Guo Y., Hines L., Xia Y., Yang S., and Sitti M., (2019), Muscle-Like and Shape-Programmable Dielectric Liquid Crystal Elastomer Actuators, Science Advances, 5 (11), eaay0855

image.png

17. Precise Control of Lyotropic Chromonic Liquid Crystal Alignment through Surface Topography

Shahsavan H.†, Guo Y.†, Davidson Z. S.†, and Sitti M., (2019), Precise Control of Lyotropic Chromonic Liquid Crystal Alignment through Surface Topography, ACS Applied Materials & Interfaces, 11 (39), 36110-36117

image.png

16. Programmable 3D Shape Changes in Liquid Crystal Polymer Networks of Uniaxial Orientation

Yu L., Shahsavan H., Rivers G., Zhang C., Si P., and Zhao B., (2018), Programmable 3D Shape Changes in Liquid Crystal Polymer Networks of Uniaxial Orientation, Advanced Functional Materials, 28 (37), 1802809

image.png
image.png

15. Simulation-based design of thermally-driven actuators using liquid crystal elastomers

Neufeld R.A.E., Shahsavan H., Zhao B., and Abukhdeir N.M., (2018), Simulation-based Design of Thermally-driven Actuators using Liquid Crystal Elastomers, Liquid Crystals, 45 (7), 1010-1022

image.png

14. Smart biomimetic micro/nanostructures based on liquid crystal elastomers and networks

Shahsavan H., Yu L., Jákli A., and Zhao, B., (2017), Smart Biomimetic Micro/Nanostructures Based on Liquid Crystal Elastomers & Networks, Soft Matter, 13, 8006-8022

image.png

13. Bacterial Networks on Hydrophobic Micropillars

Jahed Z., Shahsavan H., Verma M. S., Rogowski J. L., Seo B. B., Zhao B., Tsui T. Y., Gu F. X., and Mofrad M. R. K., (2017), Bacterial Networks on Hydrophobic Micropillars, ACS Nano, 11(1), 675- 683 

image.png

12. Thermally Active Liquid Crystal Network Gripper Mimicking the Self-Peeling of Gecko Toe Pads

Shahsavan H., Salili S. M., Jákli A., and Zhao B., (2017), Thermally Active Liquid Crystal Network Gripper Mimicking the Self-peeling of Gecko Toe Pads, Advanced Materials, 29 (3), 1604021

image.png

11.Functionally graded dry adhesives based on f ilm-terminated silicone foam

Shahsavan H.†, Liew K.†, and Zhao B., (2017), Functionally Graded Dry Adhesives Based on Film-Terminated Silicone Foam, Inter. Journal of Adhesives & Adhesion, 76, 47-73

image.png

10. Smart Muscle-Driven Self-Cleaning of Biomimetic Microstructures from Liquid Crystal Elastomers

Shahsavan H., Salili S. M., Jákli A. and Zhao B., (2015), Smart Muscle-driven Self-cleaning of Biomimetic Microstructures from Liquid Crystal Elastomers, Advanced Materials, 27 (43), 6828-6833

image.png

9. Surface modification of polydimethylsiloxane elastomer for stable hydrophilicity, optical transparency and film lubrication

Shahsavan H., Quinn J., d’Eon J., and Zhao B., (2015), Surface Modification of PDMS Elastomer for Stable Hydrophilicity, Optical Transparency and Film Lubrication, Colloids & Surfaces A., 482, 267– 275

image.png

8. Superhydro-oleophobic bio-inspired polydimethylsiloxane micropillared surface via FDTS coating/blending approaches

Pan Z., Shahsavan H., Zhang W., Yang F. K., and Zhao B., (2015), Superhydro-oleophobic Bioinspired Polydimethylsiloxane Micropillared Surface via FDTS Coating/Blending Approaches, Applied Surface Science, 324, 612-620 

image.png

7. Bioinspired Functionally Graded Adhesive Materials: Synergetic Interplay of Top Viscous–Elastic Layers with Base Micropillars

Shahsavan H., and Zhao B., (2014), Bio-inspired Functionally Graded Adhesive Materials: Synergetic Interplay of Top Viscous-elastic Layers with Base Micropillars, Macromolecules, 47 (1), 353– 364

image.png

6. Biomimetic Micro-Patterning of Epoxy Coatings for Enhanced Surface Hydrophobicity and Low Friction

McDonald B., Shahsavan H., and Zhao B., (2014), Pattern Transfer of Biomimetic Micro-Structures to a Thermoset Epoxy - Characterization of Wetting, Hydrophobicity and Friction Behavior, Macromolecular Materials and Engineering, 299 (2), 237-247

image.png

5. Poly(AAc-co-MBA) Hydrogel Films: Adhesive and Mechanical Properties in Aqueous Medium

Arunbabu D., Shahsavan H., Zhang W. and Zhao B., (2013), Effects of Cross-linking Density on the Indentation Behavior of P(AAc-co-MBA) Hydrogel Films, Journal of Physical Chemistry B, 117 (1), 441–449

image.png

4. Biologically inspired enhancement of pressure-sensitive adhesives using a thin film-terminated fibrillar interface

Shahsavan H., and Zhao B., (2012), Biologically inspired enhancement of pressure-sensitive adhesives using a thin film-terminated fibrillar interface, Soft Matter, 8, 8281–8284

image.png

3. Biomimetic Modification of Polymeric Surfaces: A Promising Pathway for Tuning of Wetting and Adhesion

 Shahsavan H., Arunbabu D., and Zhao B., (2012), Bio-inspired Modification of Polymeric Surfaces: A Promising Pathway for fabrication of Smart Interfaces, Macromolecular Materials and Engineering, 278 (8), 743–760

image.png

2. Conformal Adhesion Enhancement on Biomimetic Microstructured Surfaces

Shahsavan H., and Zhao B., (2011), Conformal Adhesion Enhancement on Biomimetic Microstructured Surfaces, Langmuir, 27 (12), 7732–7742

image.png

1. A stacked neural network approach for yield prediction of propylene polymerization

Monemian S. A., Shahsavan H., Bolouri O., Taranejoo S., Goodarzi V., Torabi-Angaji M., (2010), A Stacked Neural Network Approach for Yield Prediction of Propylene Polymerization, Journal of Applied Polymer Science, 116, 1237–1246

UniversityOfWaterloo_logo_horiz_rev_rgb.png

200 University Avenue West

Waterloo, ON, Canada N2L 3G1

+1 519 888 4567 ext: 34805

hshahsav@uwaterloo.ca

© Hamed Shahsavan 2025 .

bottom of page